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This paper deals with the problem of design of a stabilizing control in 
a linear system with damped random perturbations. This control is deter- 
mined by the condition of minimum of the mathematical expectation of the 
integral squared deviation. The investigation generalizes a result of 
Letov [ 1 1. The problem is solved by the use of Liapunov functions [ 3.41 , 
modified according to Bellman’s principles of dynamic programming 14 I. 
This approach to the problems of optimum control, based on the concept 
of optimum Liapunov functions, is described in [ 5,6 1. The author draws 
attention to the fact that during the writing of this paper he was 
familiar with the investigations of M.E. Salukvadze on the mean-square 
optimum stabilization for stationary perturbations. 

1. Formulation of the problem. We shall consider a control 
system described by the equations 

dX. 

--? = QlXl + . . 
f/t 

. + &n&t + miS +‘pi (2,q) (i = 1, . . . ,n] (1.2) 

where xi are the deviations of the n-dimensional vectorial controlled 
quantity x from its given value zi = O,(i = 1, . . . . n), C$ is the stabi- 

lizing input of the control, and ~i( t, 7) are random disturbances. The 
quantities +i(t, q) are considered to be functions of time t and a 
random r-dimensional variable q(t). In a particular case it may be that 

n= r, and the components of the vector q5 may coincide with the components 

of q(t). We assume that the random function q(t) describes a stochastic 
Markovian process with a known probabilistic transition function 17, pp. 

232-247 1 

p [s, a; 1, Bl = P [q (t) &B i q (s) = al 

admitting the decomposition 

1212 
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p is, a; 1, {a}1 = 1 - q (t, a) (t - s) t_ 0 (t - S) 

p [S, a; t, Bl = q (t, a, B) (t - s) + 0 (t - S) 

(a does not belong to B) 

(1.2) 

(1.3) 

Here, a and B are r-dimensional vectors and r-dimensional J3orelian 
sets, s < t are instants of time, the symbol P[ Q/L I denotes the proba- 
bility of the event Q at the condition L, and p( At) is an infinitesimal 
quantity of a higher order than At. 

This paper deals with the problem of design of a control action (or, 
shortly, control) which assures that the perturbed motion described by 
(1.1) approaches asymptotically the state x = 0 (for t -f m). Therefore, 
we limit ourselves to the case of the disturbances $~~(t, 7) which de- 
crease sufficiently fast as time increases. (If the disturbances ~i(t, 7) 
do not vanish for t + 00, then the approach of the motion x(t), given by 
(l.l), to the point x = 0 is possible only within a certain unreducible 
error 6 > 0.) 

We denote by the symbol M[[/L 1 the mathematical expectation of the 
random quantity < at the condition L. ‘Ihe disturbances pi are said to be 
bounded and decreasing in the mean if a function f[ t,,, t 1 may be found, 
determined and continuous for 0 <to < t, such that the following condi- 
tions are satisfied: 

j f [to, tl j < iv = const (1.4) 

_lf[l(p~ (t, q) 1 / q (to) -arbitrarYI<f 

f (to) = 1 f [to, tl dt < 

1, 

[to, tl ft>to) (1.5) 

00 (4-G) 

co 

s f” (‘t) dt < 00 t lim j (t) = 0 for t + m (1.7) 
0 

Note 1.1. In view of the conditions (1.4) and (1.5), the remark that 
4 may be equal to 7 (see above. p. 1212 ) requires a qualification. In 
this case the variable 7 may assume only the values in the region 
11 v 11 < N, and the symbols a and B in (1.2) and (1.3) denote then the 
vectors and subsets in the region (Iq II < N, respectively. (Here and in 
the following, the symbol 11 y(I d enotes the Euclidean absolute value of 
the vector y, i.e. 

II Y II = (Y12 + “. + Yyq 
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The control 5 will be sought in the form of a function & = [[x,1, tl. 
Ibis corresponds to the possibility of measuring the quantities xi(t) 
and rtk(t) from the signals entering the control system during the process 
of control [8 1. 

If the function [CT, q, tl is selected, then arbitrary initial con- 
ditions x0, qO for t = to, generate a Markovian stochastic process for 
t 2 to in the space f x, q I 17, p,?2 1, on the basis of Equations (1.1). 

We shall not define here rigorously the concept of solution of 
stochastic equations (1.1) for a general case. We shall limit ourselves 
to simple cases where the stochastic solution x(t) of Equations (1.1) 
may be determined without difficulties. 

We shall assume namely that the functions gii(t, q) are continuous in 
both variables and the realizations '1 'P'(t) of random functions q(t) are 
piecewise continuous functions. ('Ihe conditions under which the realiza- 
tions p(P)(t) actually have this property are shown, for instance, in 

t?, p.2421. 1 

With this assumption, as realizations of a stochastic solution 
{x'P'(t), q(P)(t) f of the system (1.1) we shall consider, together with 
the realizations q ‘P’(t), the continuous functions x(P)(t) satisfying 
Equations (l&l) in the intervals of const~t~(~~~~)= The Markov vector- 
function is(t), q(t)1 g enerated by the initial conditions x0, q. for 
t = to by virtue of Equations 11.1) with 5 = 4 will be denoted by the 
symbol 

(z (t), q (t) / $0, qo, to; 51 

The problem consists of the following. It is necessary to determine 
the optimum control t", i.e. the function f'" TX, q, t 1 satisfying the 
conditions: 

tuition 1.1. Every realization r(P)(t) of the solution 

should be bounded in its absolute value by a constant depending on the 
initial conditions x0 E(- DO, OO), qO, t0 3 0, i.e. for t,, < t < m 

/\Z(P) (t) 11 < N (ZO, qo, to) (4.8) 

Condition 1.2. For an arbitrary initial condition jxo, qof t,$, the 

solution fxbl, qCtl/x,, T,, to, <” I should asymptotically approach in 
mean-square the point x = 0 for t + m, i.e. 

lim Xt// 3: (1) I/' , To, tjct, tii: 5”1 =-: 0 E0.T t _+ x (1.9) 
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Condition 1.3. For an arbitrary initial condition {x0, q,,, to) the 
quantity 

should be finite for 5 = 6” and should be minimum for this control 
taken from a family of functions {[ 1 specified in advance. As an admis- 
sible class of functions ( 6 ) such functions 1 C$ 1 x, 7, t 1 j will be 
selected for which the solutions of Equations (1.1) may be determined in 
the way described above (p. 1214 1, and the use can be made of the general- 
ized derivative of the Liapunov function, which will be introduced later. 
(A rigorous discussion of this problem would distract us from the princi- 
pal task, i.e. the construction of optimum 6”. In any case, with known 
regularity of the functions p [ s, a; t, B 1 and +k( t, q) we may limit 
ourselves to continuous admissible functions { 6 [ x, q, t II , as it 
follows from the form of the solution [‘..I 

2. The method of solution of the problem. Let the functions 
V(X, q, t) and [” [x, 7, t 1 be found satisfying the conditions: 

Condition 2.1. The decomposition 

2, (z, q, t) = 232 (Lc) -+- 211 (J;, rl7 t) + uo (111 t) (2.1) 

is valid, where 

212 (x) = 2 bijXiXj, bij = const 
i,j=l 

(2.2) 

is a strongly positive-definite quadratic form, the function 

211 (Xv q, t) = i bi (77, t) Xi 
i=l 

(2.3) 

is a linear form whose coefficients b,(q, t) satisfy the inequalities 

\ bi (q, t) 1 <Nl = con& (i = 1 ,..., n) (2.4 

and the limit relations 

lim PQ (q, t)] = 0 for t -+ o. (t = I,..., 12) (2.5) 

and the function uO(q, t) satisfies the inequality 

iuo(q, t)j <NO = const (2.6) 

and the limit relation 
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lim i&f [i ~0 (q, t) 1 / qo, to] = 0 for t---f m (a.71 

for arbitrary initial conditions qO. 

Condition 2.2. The generalized derivative [6 1 of the function v with 
respect to Equations (l.l), for 5 = to IdAft vI/dt),o satisfies the 

equations 

for all the values of x, 7, and t. 

Condition 2.3. ?he generalized derivatives (d:W u1 i/dt),o and 
dM( v,lfdt satisfy the inequalities 

thus, to is the optimum control and 

2' ($3, 90, to) = s kro, go, to; Cl (2.11) 

We shall prove this proposition. That the condition 1.1 is satisfied 

may be shown in the following way. 

The derivative (du,/dt)if’,, of the function v (x) with respect to 

Equations (l.l), for an arbitrary realization q 'J(t) and for sufficient- 

ly large values of the norm 11 xj\, will be a strongly-definite negative 

function. As a result of the conditions (2.10) and of the fact that the 

functions $I~ are bounded (the conditions (1.4) and (1.5), the derivatives 

(cl H t 2, I ldt+ and (dv,/‘dt~‘(~~ 1j differ only by some bounded functions 

of time t and the random variable 77, and also by some functions of t, 7, 

and x which do not increase faster than 11 x(1 with increasing 11 x\\. Thus, 

our statement that (du,/dt){f’,, is negative follows from the condition 

(2.8). Now, it can be shown that the realizations x(P)(t) are bounded by 

the use of the function u,(x) and standard arguments of the theory of 

stability. 

Let us check whether condition 1.2 is satisfied. Consider the random 

function (solution) 
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We construct the quantity 

lit [F"l = fK [v (z (t), q (t), t) /x0, qo, to; Yl (2.,i2) 

and calculate its derivative with respect to time t at the instant t = 7. 
Considering the Markovian property of the vector-function ( x(t), q(t) f , 
we can write 

we 

= --a [jj” (z) \\” + (F’ (W i x0, qa, to; Yl (2.13) 

Integrating Equation (2.13) with respect to r from r = t, to r =T>t,, 
obtain the equation 

lri”l - u (so, qo, to) = - ibl #c(z)li2 + (F" (z))z i xo, qor to;47 do (2.14) 

c 

For T + DO the quantity V,[ 4‘" 1 converges to the quantity .M[v,(x(T))/ 

X0’ q/lo> to; ("I because of-the conditions (2.5) and (2.7) and the 
realization x(P)(t) being bounded (see the condition 1.1, whose satis- 
faction has already been shown). This and the fact that the function 
v,(t) is strongly positive-definite, imply that the lower bound of the 
first term on the left-hand side of Equation (2.14) is non-negative for 
T + 00. Therefore, the integral on the right-hand side of Equation (2.14) 
converges for T+ m, From the convergence of this integral we conclude 
that 

lim M IlIz (z>]p / 50, q0, to; y1 =o 
~3c.w 

Since the quadratic form v,(x) satisfies the inequality 

2Jz (x} < h //zp (31, = const) 

and the equation 

we finally establish the validity of the limit relation 

limVr[~'] = 0 for T--)X 
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The existence of 
in t (dV,/dt < 0). 
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this limit follows from the monotonicy of V,E E” 1 

Consequently, the equation 

ZJ (20, 710, to) = YM l]l~ (r)llF- -!- (E” (r))2 1 X0, ro, to; F”1 dz 
f, 

is valid, which proves that (2.11) is satisfied. 

We note that the limit relations derived here imply also satisfaction 
of the condition 1.2, since the form vZ(x) is strongly positive-definite 
and, thus, the inequality holds v,(x) 2 e \I x 11 2 (E > 0, const). 

‘l’he satisfaction of the condition 1.3 remains to be verified. Suppose 
that this condition is not satisfied and, consequently, an optimal 
control p different from 5” exists, and for an arbitrary initial condi- 

tion t x0, qo, t,, 1 the control p yields the inequality 

J [X0, %jo, to; k*f < J 1x0, rlo, to; F”l (2.15) 

We shall show that this assumption leads to a contradiction. From the 
condition (2.9) we conclude that 

(dq):*> - II x2 II - (PJ2 _ (2.16) 

Introducing the quantity V,[ e 1 analogous to the previous one and 
integrating the inequality (2.16) similarly to what was done in the case 
of Equation (2.8)) we obtain the inequality 

sir rZ* I - V( zo, qo, to) 2 - YM r\j II: (z) IF + (5* (4)’ ! SC@, qo, to; k* I dz (2.17) 
E 

Since it is assumed that [* is an optimum control, the norm 11 x (p) (t)lj 
of the realization of the solution { x(t), q(t)/x,, TV, t,; t*j should be 
bounded. Consequently, as before, the validity of the limit relation 

lim VT fE*l = lim M Iv2 (5 (1’)) / 20, qo, to; ?I 

may be proved for T + 00, if the limit on the right-hand side exists. 
From this relation, from the condition 1.2, and from the inequality 

v,(x) G-h II x II 2, we conclude that for T+ 00 the first term on the left- 
hand side of (2.17) converges to zero. According to the condition 1.3, 
the integral on the right-hand side of (2.17) should converge. Iherefore, 
from (2.17) by a limiting procedure for T+ = we derive the inequality 

[M,,z (z)jz -t (E(T)*)~ 150, ~0, to;<“1 dr> 2~ (20, rlo, to) 

1, 
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i.e. 

J ho, qoc to; c*l > v (20, qo, to) 

The last inequality is contradictory to our assumption (2.15) and 
Equation (2.11). Th is implies that the condition 1.3) is satisfied for 

5”. 

Thus, the problem of construction of the optimum7control 5” [x, 7, t 1 
reduces to determination of the functions v and 5” satisfying the condi- 
tions 2.1 to 2.3. 

3. Construction of the optimum control 5". In this section 
the conditions of solvability of the problem are clarified, and the form 
of the optimum control co is established. We shall write Equation (2.8) 
for the function v in explicit form, which will be called the optimum 
Liapunov function. 

For this purpose, it is necessary to know the expression for the de- 
rivative (d i [-v I/&), in terms of- the parameters bf the 
and the stochastic characteristics of the random function 

system (1.1) 
q(t). It is 

dM {vi = dM tvd dM tvd , dM fro) 
dl dt -t--x--’ ut 

Let us calculate the derivative d M ( u ) /dt. ‘Ihis calculation will 
be performed analogously to the one in 16 . We have I 

dM{vl)ldt = lim [AM {VI} / At1 for At+ j-0 

We determine A M’( ~~1. Neglecting infinitesimal quantities of higher 
order with respect to At, we consider that in the interval At two 
mutually exclusive effects may occur: 

1) the event D: the quantity ‘1 maintains its value, i.e. 

q (t + At) = q (t) = a 

2) the event D- ‘: the quantity 7 changes its value once. 

According to (1.2), the probability of the event D is P[D] = 1 - 
q(q, t) At, and the probability of the opposite event is P[ D’ ‘1 = 
q(v, tlht. 

The event D -’ may be split into a finite number of events D,-‘, . . . . 
Dn’ where an event Dkel, k < m, is a single change of the quantity ~(7 ) 
in the interval t < r ,< t + At, i.e. v(t + At) f T(t) with ~(t + At) 

E Bk = (Bk_ 1, 6~) (or q(t + At) E B, = (p,_ l,p,) for k = m) and 
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ipk] is a sequence of increasing numbers, $0 = - m, 6, = 00. 

(We note that here the case of a scalar variable has been considered; 

in a general case the considerations are analogous.) 

According to (1.3) the probability is 

P [fi,i-‘I z q (t, a, Bk) At 

If the distribution function y(t, a, /3> = q(t, a, B(f9) is introduced, 

with B(P) being the semi-interval (- 00, /3> without Q, then 

P fDk-11 z [r (4 a, B/c) - T (4 a, b--l)] At 

We have the equality 
7,x 

A&'{m> = A,ulP IDI + 2 AkvrY~Dh.-ll 

k-l 

(3.1) 

where ADvl is the change of v1 in the case of the event D, and Akv, 

is the change of v1 in the case of the -event Dk-'. In the case of the 

event D, Equations (1.1) may be considered in the interval At as ordi- 

nary differential equations, and ADvl may be determined using the 

formula of finite increments as is done in a classical case. For the 

realization DkS1 we assume Akvl = vl(x, p, t) - vl(x, 7, t) where 

P'E B,. Substituting the probabilities P[ D 1 and P[ 0k-l 1 into the 
equality (X.1), and passing to the limit for At + 0 while increasing to 

infinity the number m of divisions pk 

(pk - fiI;_-I -f 0 (Ic = 2, . . ., 712 - 1)) 

we obtain at the point (x, 7, t) 

Here, the integral is taken in the sense of Stieltjes, and the symbol 

q(t, 7) denotes the quantity y( t, 9, ~0). 

The derivative dM{ v*]/dt reduces simply to the derivative (clv,/ 

dt)c,m,, (for 7 = const), since vz does not depend explicitly on v. 

Therefore 
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Considering (3.1), (3.2), and (3.3), Fqation (2.8) may be written in 
the explicit form 

03 

*I 01 (xv By t> 4 r (6 rlt B>- 211.(x, 7, 4 q (t, d + 

+ 
dM {vo h t)> 

dt -I- i xi2 + E” fx, ‘1, t) = 0 (3.4) 
i=l 

We shall now set up the equations corresponding to the condition 

(2.9). According to this condition the left-hand side of Equation (3.4) 

should be minimum for 6 = co. Thus, the second equation for v and 5" is 

obtained from (3.4) by differentiating (varying) this equality with 

respect to 5. 

We have 

(3.5) 

Let us discuss these equations. We assume that Equations (3.4) and 

(3.5) have solutions v2, vl, and v,, of the form described above in the 

conditions 2.1. Thus, from (3.5) it follows that the optimum control 

r[X,qit]=-+($ [i!2&9+ avl~~,q’t) mi 

2=1 z t 1 ! 
consists of the linear function 

El0 = - _+_i C$-.$d mi = 
jj Pjxj (pj = const) 

i=l j=l 

and the random term in the form 

(3.6) 

(3.7) 

E,’ = -S i avlkiq’.r) mi = _ G$ bi(q, t)mi 
i=l *=I 

(3.6) 
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We shall show that under certain known conditions the problem can 
actually be solved in the form (3.6). We substitute Expression (3.6) for 
6” into Equation (3.4). The equation obtained may be satisfied by making 
equal the terms with the same power of xi. We write the equations ob- 
tained in this manner: 

Let us consider Equation (3.9) ‘Ihis equation has the same form as 
the equation for the optimum Liapunov function, derived in [l 1 dis- 
cussing the problem of construction of the optimum control f” in the 
absence of the perturbations (Pitt, q). The necessary and sufficient con- 
ditions of solvability of this equation in the form of a positive- 
definite quadratic form have been established by Kirillova [9 1. We shall 
give here these conditions in order to make our presentation complete. 
Equation (3.9) has a solution in the form of a positive-definite quad- 
ratic form if, and only if, the following condition is satisfied. 

tuition 3.1. ‘Ihe linear subspace of an n-dimensional vector space 
defined by the vectors m, Am, . , . , A”- 'rn contains the total subspace 
of the matrix A corresponding to the eigenvalues xk with non-negative 
real parts. Here A is the matrix of the coefficients uij, and m is the 
vector t 8tsi 1 . 

In particular, a sufficient condition of solvability of Equation 
(3.9) in the form of a positive-definite quadratic form V,(X) is linear 
independence of the vectors m, Am, . . . . An-'m. In the following we 
shall assume that the condition 3.1 is satisfied. 

Let the function V,(X) be found from Equation (3.9). Thus, the linear 

part el” of the optimum control is determined from the relation (3.7). 
Substituting [,O, instead of t, into Equation (1. l), we obtain an 
auxiliary system of equations 
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The solutions of the system (3.12) are obviously asymptotically 

stable, since the function V,(X) is positive-definite and its derivative 

(%ld% 12) on the strength of the system of equations (3.12) is 

negative-definite, i.e. all the assumptions of the Liapunov theorem of 

asymptotic stability are satisfied 12, p.90 1. 

Let us consider now Equation (3.10). It is convenient to discuss this 
equation in the following way. 

On the left-hand side of Equation (3.10) is a quantity equal to the 

generalized derivative (dM(v,]/dt)(,.,,, of the function u1 with re- 

spect to Equations (3.12), i.e. we have 

(3.13) 

With this interpretation of Fquation (3.10) it is easy to show that 

this equation has a solution in the form of a linear form (2.3), satis- 

fying the conditions (2.4) and (2.5). In fact, the form ul(n, q, t) can 

be determined by the formula 

Ul (z, q, t) = pqij 'u2;:i(r))qi(r, q(a))/z, 7, t; (3.12)] dz (3.14) 

t- i=l 

where (3.12) in the symbol for mathematical expectation Munder the in- 

tegral sign in (3.14) indicates that r(r) is the solution of the system 

(3.12) corresponding to the initial condition x for r = t. We shall now 

verify whether the conditions (2.3), (2.4), and (2.5) are satisfied by 

the function u1 determined by Equation (3.14). In order to establish the 

linearity of the function u1 (3.14), we write this expression out in 

full. If F(t) denotes the fundamental matrix of solutions of the system 

(3.12) (F(0) = E being the unitary matrix) then 

ah (x (z,) 

tiXi = 2$ bii {F(~-tt)cc)~ _ 
j=l 

where (F(r - t)x]. is the jth row of the product of the matrix F(r - t) 
and the vector x. k ow Equation (3.14) can be written as 

i bij{F(z - t) s)j M[T~ (~7 11 (r)) lq (t), tl}dT 

(3.15) 

j=l 

Since F(t) is the fundamental matrix of solutions of the asymptotic- 

ally stable system (3.12), the elements of this matrix should approach 
zero for increasing time, and 
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where 11 F 11 is the norm of the matrix F. 

Frqm the conditions (1.41, (1.51, and (3.16) we conclude that the 
improper integral on the right-hand side of (3.15) is absolutely con- 
vergent, while v1 is a linear function of the coordinates xi with bound- 
ed coefficients 

@= 1,. . ., izj (3.1ij 

Here,Fkj are the elements of the matrix F, These coefficients, on 
the basis of the conditions (1.51, (1.61, and (3.161, satisfy the in- 
equalities 

09 

which with (1.7) imply satisfaction of the condition (2.5). Now it is 
only necessary to prove that the function vl(x, q, t) satisfies Equation 
(3.13). We calculate the derivative (dM1v,I/~&(~.~~) for the function 
v, (3.15). Co nsl ering that x(t) in the expression for v, is a solution 'd 
of the system (3.12), and considering that 
tion, we have 

q(t) is a random Markov func- 

The last two terms in the last equation are equal to zero. In fact, 
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x(t) = F(t)c (c is a constant vector), i.e. 

& [F (z - t) z (t), = .& [F (z - t) F (t) c] = & [F (z) c] = 0. 

In the same way 

since the Markovian properties of the function q(t) imply 
pression in curl brackets is equal to zero. Consequently, 
v1 (3.15) indeed satisfies Equation (3.13). Ibis function 
satisfies the condition (2.10). 

(t), tl - 

that the ex- 
the function 
al so obvious1 y 

Remark 3.1. Equations (3.15) imply that in order to determine the 
functions V~(ZX, 7, t) it is sufficient to know the functions 

Xi (rl, t, 4 = M [cpi (v, 9 (r)) / rl, tl (i=l,. . ., n) 

i.e. it is sufficient to have, at each time t, the forecast of the 
future mean values of the perturbations ~i(Z, q(r )), r > t, on the basis 
of the knowledge of realized values q(t) = 7. 

Let us consider Equation (3.11). This equation has the solution 

u&J t) which has the form 

210 (11, 4 = !M [{i: [bi (rl (4, r) ‘pi (r, r (r))] - 
t i=l 

I (i bi (q (r), 7) -i>‘} / qs t] dr 
-- 

4 
(3.20) 

+1 

The proof that the function v0 (3.20) satisfies Equation (3.11), the 
conditions (2.6) and (2.7), and the second condition (2.11), can be 
given by the use of the conditions (1.3) to (1.6), similarly to what was 
done in the case of the function vl. Therefore, we omit here this proof. 

Thus, we arrive at the conclusion that, with the condition 3.1 being 
satisfied, the functions v and 5‘” exist which satisfy the conditions 2.1 
to 2.3, i.e. with this condition the problem is solvable. Let us 
sununarize the result obtained. 

The problem of construction of an optimum control system c”[x, q, t] 
minimizing the mean-squared error 
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in the system (1.1) in the presence of bounded and decreasing random per- 

turbations ~i(t, 7) is solvable if, and only if, the condition 3.1 is 

satisfied. 'Ihe optimum control co should be presented in the form 

The term tl" coincides with the optimum control which is obtained for 

an analogous system but in the absence of perturbations. Ihe random com- 

ponent c,"(v, t) takes into account the existence of random perturbations 

g5i(t, 7). Tnis term is determined at each instant of time t according to 
the information on the realized values of q(t), but the computational 

formulas for t," assume the knowledge of the forecast of the future 

values of the mean values of the perturbations ~i(f, q), z > t. 
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